Grading Scheme IGO 2021

$8^{\text {th }}$ Iranian Geometry Olympiad

Elementary Level

Problem 1.
(8 points) Drawing the desired figure.

- (4 points) Drawing a figure with 1 reflection Symmetry.

Problem 2.

(2 points) Considering the point N^{\prime} on $A D$ such that $L N^{\prime} \| A B$.
(2 points) Proving that $\left[K L M N^{\prime}\right]=1 / 2[A B C D]$.
(4 points) Proving that $K M \| A D$.

Problem 3.

(2 points) Proving the lemma 1.
(6 points) Investigate the case 2.

- (2 points) Showing that $\angle P^{\prime} Z Q^{\prime}=360^{\circ}-2 \angle P^{\prime} B Q^{\prime}$.
- (2 points) Showing that $\angle P X Q=180^{\circ}-\angle P B Q$.
- (2 points) Calculating the angle $\angle P B Q$.
(0 point) Investigate the case 1.

Problem 4.

- Solution 1:

(2 points) Considering the point Z and showing that $Z B=D X=F Y$.
(2 points) Calculating the angle $\angle O Z B$.
(2 points) Calculating the angles $\angle O D X$ and $\angle O F Y$.
(2 points) Proving that $O Z B \cong O D X \cong O F Y$.

- Solution 2:

(2 points) Considering the points K, L, T.
(2 points) Proving that $A B E \cong A X K$.
(2 points) Proving that $A B D \cong A L Y$.
(2 points) Proving the equality of power of points B, X, Y and finishing the solution.

Problem 5.
(3 points) Conclude the first equality.
(2 points) Conclude the second equality.
(3 points) Finishing the solution.

Intermediate Level

Problem 1.

(3 points) Considering the centroid (G) and showing that $G D \| E C$.
(1 point) Proving that $H B \perp G D$.
(1 point) Proving that $G H \perp B C$.
(3 points) Proving that H is orthocenter of triangle $B G D$ and finishing the solution.

Problem 2.

- Solution 1:

(1 point) Proving that $D A F \sim B E C$.
(2 points) Proving that $E F\|A D\| B C$.
(2 points) Considering the point F^{\prime} and showing that $A F^{\prime} B F$ is cyclic.
(1 point) Proving that $A E \cdot E B=B C^{2}$.
(2 points) Proving the inequality.

- Solution 2 :

(1 point) Considering the points X and Y and showing that $D Y B F$ and $C X A F$ are cyclic.
(2 points) Calculating the $C D^{2}$ (equation 1).
(1 point) Calculating the $D X$ and $C Y$.
(2 points) Proving the inequality $D X+C Y \geq 4 B C$.
(2 points) Finishing the solution.

Problem 3.

(2 points) Considering the point K^{\prime} such that $A B C \sim A K^{\prime} D$.
(1 point) Showing that $D C=D E$.
(2 points) Proving that $A B K^{\prime} F$ is cyclic.
(1 point) Proving that $E L D M$ is cyclic.
(2 points) Showing that the points K, L, M are collinear.

Problem 4.

(1 point) Considering the point Q^{\prime}.
(1 point) Showing that the point M lies on perpendicular bisector of $C I$.
(1 point) Proving that $Q^{\prime} I \perp M I$.
(2 points) Proving that $M I Q^{\prime} \sim M N C$.
(1 point) Proving that $S T \| I N$.
(2 points) Showing that the points T, C, Q^{\prime} are collinear.

Problem 5.

(5 points) Proving that the circles $X L D$ and $C X K$ pass through a fixed point.

- (3 points) Considering the fixed points L^{\prime} and D^{\prime}.
- (2 points) Proving that $D^{\prime} X L D$ is cyclic.
(3 points) Showing that the line $X Y$ passes through a fixed point.
- (1 point) Parallel case.
- (2 points) Concurrent case.

Advanced Level

Problem 1.
(3 points) Showing that $\angle E F A=\angle B-\angle C$.
(3 points) Proving that $A E H F$ is cyclic.
(2 points) Finishing the solution.

Problem 2.

(1 point) Redefine the point F.
(2 points) Proving that $C P$ is tangent to the circumcircle of triangle $C B D$.
(2 points) Calculating the angle of $\angle F B C$.
(3 points) Showing that $\angle A B C=2 \angle A F C$ and Conclusion.

Problem 3.

(2 points) Just to prove that the two circles are tangent (with any solution).
(1 point) Pointing to the idea of Inversion centered at H.
(2 points) Constructing the points $P^{\prime}, T^{\prime}, L^{\prime}$.
(2 points) Showing that the $P^{\prime} K$ is the image of ω under the inversion and $P^{\prime} K \perp B C$.
(1 point) Proving that $M N$ is the perpendicular bisector of $D L^{\prime}$.
(1 point) Proving that $D L^{\prime} K T^{\prime}$ is cyclic by center M.
(1 point) Finishing the solution.

Problem 4.

(3 points) First Lemma.
(3 points) Second Lemma.
(2 points) Finishing the solution.

Problem 5.

(2 points) Proving that the point A lies on Euler line.

- (1 point) Proving that the points H, O, A^{\prime} are collinear.
- (1 point) Proving that the points A, O, A^{\prime} are collinear.
(6 points) Proving that the point D lies on Euler line.
- (2 points) Proving that $A^{\prime} I K E$ is cyclic.
- (2 points) Proving that $I X Y$ is isosceles.
- (1 point) Proving that $O X Y \sim H F E$.
- (1 point) Proving that the points H, O, D are collinear.

