Grading Scheme IGO 2021

8th Iranian Geometry Olympiad

Elementary Level

Problem 1.

(8 points) Drawing the desired figure.

• (4 points) Drawing a figure with 1 reflection Symmetry.

Problem 2.

(2 points) Considering the point N' on AD such that $LN' \parallel AB$.

(2 points) Proving that $\left[KLMN' \right] = 1/2 \left[ABCD \right]$.

(4 points) Proving that $KM \parallel AD$.

Problem 3.

(2 points) Proving the lemma 1.

(6 points) Investigate the case 2.

- (2 points) Showing that $\angle P'ZQ' = 360^{\circ} 2\angle P'BQ'$.
- (2 points) Showing that $\angle PXQ = 180^{\circ} \angle PBQ$.
- (2 points) Calculating the angle $\angle PBQ$.

(0 point) Investigate the case 1.

Problem 4.

• Solution 1:

(2 points) Considering the point Z and showing that ZB = DX = FY.

(2 points) Calculating the angle $\angle OZB$.

(2 points) Calculating the angles $\angle ODX$ and $\angle OFY$.

(2 points) Proving that $OZB \cong ODX \cong OFY$.

- Solution 2:
 - (2 points) Considering the points K, L, T.
 - (2 points) Proving that $ABE \cong AXK$.
 - (2 points) Proving that $ABD \cong ALY$.
 - (2 points) Proving the equality of power of points B, X, Y and finishing the solution.

Problem 5.

- (3 points) Conclude the first equality.
- (2 points) Conclude the second equality.
- (3 points) Finishing the solution.

Intermediate Level

Problem 1.

(3 points) Considering the centroid (G) and showing that $GD \parallel EC$.

(1 point) Proving that $HB \perp GD$.

(1 point) Proving that $GH \perp BC$.

(3 points) Proving that H is orthocenter of triangle BGD and finishing the solution.

Problem 2.

• Solution 1:

- (1 point) Proving that $DAF \sim BEC$.
- (2 points) Proving that $EF \parallel AD \parallel BC$.
- (2 points) Considering the point F' and showing that AF'BF is cyclic.
- (1 point) Proving that $AE \cdot EB = BC^2$.
- (2 points) Proving the inequality.

• Solution 2:

(1 point) Considering the points X and Y and showing that DYBF and CXAF are cyclic.

(2 points) Calculating the CD^2 (equation 1).

- (1 point) Calculating the DX and CY.
- (2 points) Proving the inequality $DX + CY \ge 4BC$.
- (2 points) Finishing the solution.

Problem 3.

(2 points) Considering the point K' such that $ABC \sim AK'D$.

- (1 point) Showing that DC = DE.
- (2 points) Proving that ABK'F is cyclic.
- (1 point) Proving that ELDM is cyclic.
- (2 points) Showing that the points *K*, *L*, *M* are collinear.

Problem 4.

- (1 point) Considering the point Q'.
- (1 point) Showing that the point M lies on perpendicular bisector of CI.
- (1 point) Proving that $Q'I \perp MI$.
- (2 points) Proving that $MIQ' \sim MNC$.
- (1 point) Proving that $ST \parallel IN$.

(2 points) Showing that the points T, C, Q' are collinear.

Problem 5.

(5 points) Proving that the circles *XLD* and *CXK* pass through a fixed point.

- (3 points) Considering the fixed points L' and D'.
- (2 points) Proving that D'XLD is cyclic.

(3 points) Showing that the line XY passes through a fixed point.

- (1 point) Parallel case.
- (2 points) Concurrent case.

Advanced Level

Problem 1.

(3 points) Showing that $\angle EFA = \angle B - \angle C$.

(3 points) Proving that *AEHF* is cyclic.

(2 points) Finishing the solution.

Problem 2.

(1 point) Redefine the point F.

(2 points) Proving that CP is tangent to the circumcircle of triangle CBD.

(2 points) Calculating the angle of $\angle FBC$.

(3 points) Showing that $\angle ABC = 2 \angle AFC$ and Conclusion.

Problem 3.

(2 points) Just to prove that the two circles are tangent (with any solution).

(1 point) Pointing to the idea of Inversion centered at *H*.

(2 points) Constructing the points P', T', L'.

(2 points) Showing that the P'K is the image of ω under the inversion and $P'K \perp BC$.

(1 point) Proving that MN is the perpendicular bisector of DL'.

(1 point) Proving that DL'KT' is cyclic by center M.

(1 point) Finishing the solution.

Problem 4.

- (3 points) First Lemma.
- (3 points) Second Lemma.
- (2 points) Finishing the solution.

Problem 5.

(2 points) Proving that the point A lies on Euler line.

- (1 point) Proving that the points H, O, A' are collinear.
- (1 point) Proving that the points A, O, A' are collinear.

(6 points) Proving that the point D lies on Euler line.

- (2 points) Proving that A'IKE is cyclic.
- (2 points) Proving that *IXY* is isosceles.
- (1 point) Proving that $OXY \sim HFE$.
- (1 point) Proving that the points *H*, *O*, *D* are collinear.