$6^{\text {th }}$ Iranian Geometry Olympiad

Contest problems with solutions

$6^{\text {th }}$ Iranian Geometry Olympiad Contest problems with solutions.

This booklet is prepared by Alireza Dadgarnia and Benyamin Ghaseminia. Copyright ©Iranian Geometry Olympiad Secretariat 2018-2019. All rights reserved.

The contents of this booklet are to be kept secret until they appear on the official IGO website: igo-official.ir

Contents

Elementary Level 2
Problems 2
Solutions 4
Intermediate Level 12
Problems 12
Solutions 13
Advanced Level 24
Problems 24
Solutions 26

Elementary Level

Problems

1) There is a table in the shape of a 8×5 rectangle with four holes on its corners. After shooting a ball from points A, B and C on the shown paths, will the ball fall into any of the holes after 6 reflections? (The ball reflects with the same angle after contacting the table edges.)

$(\rightarrow \mathrm{p} .4)$
2) As shown in the figure, there are two rectangles $A B C D$ and $P Q R D$ with the same area, and with parallel corresponding edges. Let points N, M and T be the midpoints of segments $Q R, P C$ and $A B$, respectively. Prove that points N, M and T lie on the same line.

$$
(\rightarrow \text { p. } 7)
$$

3) There are $n>2$ lines on the plane in general position; Meaning any two of them meet, but no three are concurrent. All their intersection points are marked, and then all the lines are removed, but the marked points are remained. It is not known which marked point belongs to which two lines. Is it possible to know which line belongs where, and restore them all?
$(\rightarrow$ p.8)
4) Quadrilateral $A B C D$ is given such that

$$
\angle D A C=\angle C A B=60^{\circ},
$$

and

$$
A B=B D-A C
$$

Lines $A B$ and $C D$ intersect each other at point E. Prove that

$$
\angle A D B=2 \angle B E C
$$

$$
(\rightarrow \mathrm{p} .9)
$$

5) For a convex polygon (i.e. all angles less than 180°) call a diagonal bisector if its bisects both area and perimeter of the polygon. What is the maximum number of bisector diagonals for a convex pentagon?
$(\rightarrow$ p.10)

Solutions

1) There is a table in the shape of a 8×5 rectangle with four holes on its corners. After shooting a ball from points A, B and C on the shown paths, will the ball fall into any of the holes after 6 reflections? (The ball reflects with the same angle after contacting the table edges.)

Proposed by Hirad Alipanah
Solution. It's easy to track the trajectory of the ball.

Point A :

(a) The ball goes through a hole with one (b) The ball doesn't go through a hole afreflection. ter six reflections.

Point B :

(a) The ball goes through a hole with five (b) The ball goes through a hole with five reflections. reflections.

(a) The ball goes through a hole with six (b) The ball goes through a hole with four refelctions. reflections.

There are two point of views to the problem:
(a) Looking for the trajectories where the ball goes through a hole with at most 6 reflections:
In this case, all cases except $A(\mathrm{~b})$ are desired.
(b) Looking for the trajectories where the ball goes through a hole with exactly 6 reflections:
In this case, $C(\mathrm{a})$ is the only answer to the problem.
2) As shown in the figure, there are two rectangles $A B C D$ and $P Q R D$ with the same area, and with parallel corresponding edges. Let points N, M and T be the midpoints of segments $Q R, P C$ and $A B$, respectively. Prove that points N, M and T lie on the same line.

Proposed by Morteza Saghafian
Solution. Let L be the intersection point of $P Q$ and $C R$, and let K be the intersection point of $B C$ and $A P$.

Since $Q R \| P C$, it is deduced that L, N and M are collinear; Similarly, K, T and M are collinear. Therefore it suffices to prove that $P L C K$ is a parallelogram to deduce that K, M and L are collinear, and get the desired result of the problem. Since $P L \| C K$, it suffices to show that $P K \| C L$, or $P A \| C R$. Since the areas of the two rectangles are equal, it is implied that

$$
P D \cdot D R=A D \cdot C D \Longrightarrow \frac{P D}{C D}=\frac{A D}{D R} .
$$

Which implies $A P \| C R$, and the proof is complete.
3) There are $n>2$ lines on the plane in general position; Meaning any two of them meet, but no three are concurrent. All their intersection points are marked, and then all the lines are removed, but the marked points are remained. It is not known which marked point belongs to which two lines. Is it possible to know which line belongs where, and restore them all?

Proposed by Boris Frenkin - Russia
Answer. Yes, it is.

Solution. Draw the lines which each of them contains $n-1$ marked points, at least. All the original lines are among these lines. Conversely, let some line ℓ contains some $n-1$ marked points. They are points of meet of some pairs of the original lines $\left(\ell_{1}, \ell_{2}\right),\left(\ell_{3}, \ell_{4}\right), \ldots,\left(\ell_{2 n-3}, \ell_{2 n-2}\right)$. Since $n>2$, we have $2 n-2>n$, so ℓ_{i} coincides with ℓ_{j} for some $1 \leq i<j \leq 2 n-2$. Then these lines belong to distinct pairs in the above list, and the two corresponding marked points belong to $\ell_{i}=\ell_{j}$. But then also $\ell=\ell_{i}$, and we are done.
4) Quadrilateral $A B C D$ is given such that

$$
\angle D A C=\angle C A B=60^{\circ},
$$

and

$$
A B=B D-A C .
$$

Lines $A B$ and $C D$ intersect each other at point E. Prove that

$$
\angle A D B=2 \angle B E C .
$$

Proposed by Iman Maghsoudi
Solution. Consider point F on ray $B A$ such that $A F=A C$.

Knowing that $A B=B D-A C$, it is implied that $B F=B D$. Therefore

$$
\left.\begin{array}{l}
A F=A C \tag{1}\\
A D=A D \\
\angle F A D=\angle C A D=60^{\circ}
\end{array}\right\} \Longrightarrow \triangle F A D \cong \triangle C A D .
$$

Note that

$$
\begin{equation*}
\angle B E C=\angle F A D-\angle A D C \stackrel{(1)}{=} 60^{\circ}-\angle A D F . \tag{2}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
\angle A D B=\angle F D B-\angle A D F & =\angle A F D-\angle A D F \\
& =\left(120^{\circ}-\angle A D F\right)-\angle A D F \\
& =120^{\circ}-2 \angle A D F \\
& \stackrel{(2)}{=} 2 \angle B E C .
\end{aligned}
$$

So the claim of the problem is proved.
5) For a convex polygon (i.e. all angles less than 180°) call a diagonal bisector if its bisects both area and perimeter of the polygon. What is the maximum number of bisector diagonals for a convex pentagon?

Proposed by Morteza Saghafian
Answer. The maximum number of bisector diagonals is 2 .

Solution. Note that for each vertex, there is at most one bisector diagonal that passes through it; Therefore there are at most 2 bisector diagonals in the pentagon. The following figure shows an example where the pentagon has two bisector diagonals.

Intermediate Level

Problems

1) Two circles ω_{1} and ω_{2} with centers O_{1} and O_{2} respectively intersect each other at points A and B, and point O_{1} lies on ω_{2}. Let P be an arbitrary point lying on ω_{1}. Lines $B P, A P$ and $O_{1} O_{2}$ cut ω_{2} for the second time at points X, Y and C, respectively. Prove that quadrilateral $X P Y C$ is a parallelogram.
2) Find all quadrilaterals $A B C D$ such that all four triangles $D A B, C D A$, $B C D$ and $A B C$ are similar to one-another.
3) Three circles ω_{1}, ω_{2} and ω_{3} pass through one common point, say P. The tangent line to ω_{1} at P intersects ω_{2} and ω_{3} for the second time at points $P_{1,2}$ and $P_{1,3}$, respectively. Points $P_{2,1}, P_{2,3}, P_{3,1}$ and $P_{3,2}$ are similarly defined. Prove that the perpendicular bisector of segments $P_{1,2} P_{1,3}, P_{2,1} P_{2,3}$ and $P_{3,1} P_{3,2}$ are concurrent.
4) Let $A B C D$ be a parallelogram and let K be a point on line $A D$ such that $B K=A B$. Suppose that P is an arbitrary point on $A B$, and the perpendicular bisector of $P C$ intersects the circumcircle of triangle $A P D$ at points X, Y. Prove that the circumcircle of triangle $A B K$ passes through the orthocenter of triangle $A X Y$.
$(\rightarrow \mathrm{p} .19)$
5) Let $A B C$ be a triangle with $\angle A=60^{\circ}$. Points E and F are the foot of angle bisectors of vertices B and C respectively. Points P and Q are considered such that quadrilaterals $B F P E$ and $C E Q F$ are parallelograms. Prove that $\angle P A Q>150^{\circ}$. (Consider the angle $P A Q$ that does not contain side $A B$ of the triangle.)

Solutions

1) Two circles ω_{1} and ω_{2} with centers O_{1} and O_{2} respectively intersect each other at points A and B, and point O_{1} lies on ω_{2}. Let P be an arbitrary point lying on ω_{1}. Lines $B P, A P$ and $O_{1} O_{2}$ cut ω_{2} for the second time at points X, Y and C, respectively. Prove that quadrilateral $X P Y C$ is a parallelogram.

Proposed by Iman Maghsoudi

Solution.

One can obtain

$$
\begin{equation*}
\angle A P B=\frac{\widehat{A O_{1} B}}{2}+\frac{\widehat{X C Y}}{2} . \tag{1}
\end{equation*}
$$

Note that $\angle A O_{2} O_{1}=\angle B O_{2} O_{1}$, therefore $\angle A O_{1} O_{2}=\angle B O_{1} O_{2}$. Now
since O_{1} is the circumcenter of triangle $A P B$, it is deduced that

$$
\begin{equation*}
\angle A P B=180^{\circ}-\frac{\angle A O_{1} B}{2}=180^{\circ}-\frac{\widehat{A X C}}{2}=\frac{\widehat{A B C}}{2} \tag{2}
\end{equation*}
$$

Hence, according to equations 1 and 2 it is obtained that

$$
\frac{\widehat{A O_{1} B}}{2}+\frac{\widehat{X C Y}}{2}=\frac{\widehat{A B C}}{2} \Longrightarrow \widehat{X C Y}=\widehat{B Y C}
$$

thus $B X \| C Y$, similarly $A Y \| X C$. This imlplies that $X P Y C$ is a parallelogram and the claim of the problem is proved.
2) Find all quadrilaterals $A B C D$ such that all four triangles $D A B, C D A$, $B C D$ and $A B C$ are similar to one-another.

Proposed by Morteza Saghafian

Answer. All rectangles.

Solution. First assume that $A B C D$ is a concave quadrilateral. Without loss of generality one can assume $\angle D>180^{\circ}$, in other words D lies inside of triangle $A B C$. Again without loss of generality one can assume that $\angle A B C$ is the maximum angle in triangle $A B C$. Therefore

$$
\angle A D C=\angle A B C+\angle B A D+\angle B C D>\angle A B C .
$$

Thus $\angle A D C$ is greater than all the angles of triangle $A B C$, so triangles $A B C$ and $A D C$ cannot be similar. So it is concluded that $A B C D$ must be convex.
Now let $A B C D$ be a convex quadrilateral. Without loss of generality one can assume that the $\angle B$ is the maximum angle in the quadrilateral. It can be written that

$$
\angle A B C>\angle D B C, \quad \angle A B C \geq \angle A D C \geq \angle B C D .
$$

Since triangles $A B C$ and $B C D$ are similar, it is implied that $\angle A B C=$ $\angle B C D$ and similarly, all the angles of $A B C D$ are equal; Meaning $A B C D$ must be a rectangle. It is easy to see that indeed, all rectangles satisfy the conditions of the problem.
3) Three circles ω_{1}, ω_{2} and ω_{3} pass through one common point, say P. The tangent line to ω_{1} at P intersects ω_{2} and ω_{3} for the second time at points $P_{1,2}$ and $P_{1,3}$, respectively. Points $P_{2,1}, P_{2,3}, P_{3,1}$ and $P_{3,2}$ are similarly defined. Prove that the perpendicular bisector of segments $P_{1,2} P_{1,3}, P_{2,1} P_{2,3}$ and $P_{3,1} P_{3,2}$ are concurrent.

Proposed by Mahdi Etesamifard

Solution.

First assume that no two of the lines $\ell_{1} \equiv P_{2,1} P_{3,1}, \ell_{2} \equiv P_{1,2} P_{3,2}$ and $\ell_{3} \equiv P_{1,3} P_{2,3}$ are parallel; Consider triangle $X Y Z$ made by intersecting these lines, where

$$
\begin{aligned}
X & \equiv \ell_{2} \cap \ell_{3}, \\
Y & \equiv \ell_{1} \cap \ell_{3}, \\
Z & \equiv \ell_{2} \cap \ell_{1} .
\end{aligned}
$$

Note that

$$
\angle P_{3,2} P_{1,2} P=\angle P_{3,2} P P_{2,3}=\angle P P_{1,3} P_{2,3},
$$

meaning $X P_{1,2}=X P_{1,3}$. Similarly, it is implied that $Y P_{2,1}=Y P_{2,3}$ and $Z P_{3,1}=Z P_{3,2}$. Therefore, the angle bisectors of angles $Y X Z, X Y Z$ and
$Y Z X$ are the same as the perpendicular bisectors of segments $P_{1,2} P_{1,3}$, $P_{2,1} P_{2,3}$ and $P_{3,1} P_{3,2}$; Thus, these three perpendicular bisectors are concurrent at the incenter of triangle $X Y Z$, resulting in the claim of the problem.
Now assume that at least two of the lines $\ell_{1}=P_{2,1} P_{3,1}, \ell_{2}=P_{1,2} P_{3,2}$ and $\ell_{3}=P_{1,3} P_{2,3}$ are parallel; Without loss of generality assume that ℓ_{1} and ℓ_{2} are parallel. Similar to the previous case,

$$
\angle P_{1,2} P_{3,2} P=\angle P_{1,2} P P_{2,1}=\angle P_{2,1} P_{3,1} P .
$$

But since $\ell_{1} \| \ell_{2}$, it is also true that

$$
\angle P_{1,2} P_{3,2} P+\angle P_{2,1} P_{3,1} P=180^{\circ},
$$

Hence $\angle P_{1,2} P_{3,2} P=\angle P_{2,1} P_{3,1} P=90^{\circ}$. This equation immediately implies $\ell_{3} \nVdash \ell_{2}$, because otherwise it would be deduced that $\ell_{3} \perp P_{1,3} P_{1,2}$ and $\ell_{2} \perp P_{1,3} P_{1,2}$, resulting in $P_{1,3} P_{1,2} \| P_{3,1} P_{3,2}$; Which is clearly not possible. Now consider trapezoid $X Y P_{2,1} P_{1,2}$. The problem is now equivalent to show that the angle bisector of $\angle X$, angle bisector of $\angle Y$ and the perpendicular bisector of $P_{3,1} P_{3,2}$ concur. Note that ℓ_{1} and ℓ_{2} are parallel to the perpendicular bisector of $P_{3,1} P_{3,2}$, and in fact, the perpendicular bisector of $P_{3,1} P_{3,2}$ connects the midpoints of $X Y$ and $P_{3,1} P_{3,2}$. Now the claim of the problem is as simple as follows.

Claim. In trapezoid $X Y P_{2,1} P_{1,2}$, the angle bisector of $\angle X$, the angle bisector of $\angle Y$, and the mid-line of the trapezoid are concurrent.

Proof. Let K be the intersection of the angle bisector of $\angle X$ and the angle bisector of $\angle Y$. Let $P_{3,2}^{\prime}, P_{3,1}^{\prime}$ and K^{\prime} be the foot of perpendicular lines
from K to lines $P_{1,2} X, P_{2,1} Y$ and $X Y$, respectively. Since K lies on the angle bisector of $\angle X$, it is deduced that $K P_{3,2}^{\prime}=K K^{\prime}$, and similarly since K lies on the angle bisector of $\angle Y, K P_{3,1}^{\prime}=K K^{\prime}$; Thus $K P_{3,1}^{\prime}=K P_{3,2}^{\prime}$, meaning K lies on the mid-line of trapezoid $X Y P_{2,1} P_{1,2}$.

This result leads to the conclusion of the problem.
4) Let $A B C D$ be a parallelogram and let K be a point on line $A D$ such that $B K=A B$. Suppose that P is an arbitrary point on $A B$, and the perpendicular bisector of $P C$ intersects the circumcircle of triangle $A P D$ at points X, Y. Prove that the circumcircle of triangle $A B K$ passes through the orthocenter of triangle $A X Y$.

Proposed by Iman Maghsoudi
Solution. Let $A N$ be the altitude of triangle $A X Y$. Suppose that the circumcircle of triangle $A B K$ intersects $A N$ at the point R. It is enough to show that R is the orthocenter of triangle $A X Y$.

Suppose that $P C$ and $A N$ intersects the circumcircle of triangle $A P D$ for the second time at point T and S, respectively and $A N$ intersects $C D$ at Q. We know that

$$
\begin{equation*}
\angle B R S=\angle A K B=\angle K A B=\angle P T D \Longrightarrow \angle B R S=\angle P T D \tag{1}
\end{equation*}
$$

Notice that $X Y$ is perpendicular to $A N$ and $P C$, so $A N \| P C$. Also $A P \| C Q$ so $A P C Q$ is parallelogram. Now we have

$$
\left.\begin{array}{l}
\angle B A R=\angle T C D \\
(1) \Longrightarrow \angle A R B=\angle C T D \\
A B=C D
\end{array}\right\} \Longrightarrow \triangle A R B \cong \triangle C T D \Longrightarrow C T=A R .
$$

So $P T Q R$ is also a parallelogram. APTS is an isosceles trapezoid so

$$
C Q=A P=T S .
$$

Therefore $T Q S C$ is also an isosceles trapezoid. Finally

$$
C S=T Q=P R \Longrightarrow C S R P \text { is an isosceles trapezoid. }
$$

Therefore, S and R are symmetric with respect to $X Y$. So R should be the orthocenter of triangle $A X Y$.
5) Let $A B C$ be a triangle with $\angle A=60^{\circ}$. Points E and F are the foot of angle bisectors of vertices B and C respectively. Points P and Q are considered such that quadrilaterals $B F P E$ and $C E Q F$ are parallelograms. Prove that $\angle P A Q>150^{\circ}$. (Consider the angle $P A Q$ that does not contain side $A B$ of the triangle.)

Proposed by Alireza Dadgarnia
Solution. Let I and be the intersection point of lines $B E$ and $C F$, and let R be the intersection point of lines $Q E$ and $P F$. It is easy to see that $\angle B I C=120^{\circ}$. Thus $A E I F$ is a cyclic quadrilateral and so

$$
\begin{equation*}
C E \cdot C A=C I \cdot C F \tag{1}
\end{equation*}
$$

Also $\angle P R Q=\angle B I C=120^{\circ}$, therefore it suffices to show that at least on of the angles $\angle A P R$ or $\angle A Q R$ is greater than or equal to 30°.

Assume the contrary, meaning both of these angles are less than 30°. Hence there exists a point K on the extension of ray $C A$ such that $\angle K Q E=30^{\circ}$. Since $\angle I A C=30^{\circ} \angle A C I=\angle K E Q$, it is deduced that $\triangle A I C \sim \triangle Q K E$. This implies

$$
\frac{C I}{C A}=\frac{K E}{Q E}>\frac{A E}{C F} \Longrightarrow A E<\frac{C F \cdot C I}{C A} \stackrel{(1)}{=} C E .
$$

Similarly, it is obtained that $A F<B F$. On the other hand at least on of the angles $\angle A B C$ or $\angle A C B$ are not less than 60°. Without loss of generality one can assume that $\angle A B C \geq 60^{\circ}$ thus $A C \geq B C$ and according to angle bisector theorem it is obtained that $A F \geq B F$, which is a contradiction. Hence the claim of the problem.

Advanced Level

Problems

1) Circles ω_{1} and ω_{2} intersect each other at points A and B. Point C lies on the tangent line from A to ω_{1} such that $\angle A B C=90^{\circ}$. Arbitrary line ℓ passes through C and cuts ω_{2} at points P and Q. Lines $A P$ and $A Q$ cut ω_{1} for the second time at points X and Z respectively. Let Y be the foot of altitude from A to ℓ. Prove that points X, Y and Z are collinear.
$(\rightarrow \mathrm{p} .26)$
2) Is it true that in any convex n-gon with $n>3$, there exists a vertex and a diagonal passing through this vertex such that the angles of this diagonal with both sides adjacent to this vertex are acute?
3) Circles ω_{1} and ω_{2} have centres O_{1} and O_{2}, respectively. These two circles intersect at points X and $Y . A B$ is common tangent line of these two circles such that A lies on ω_{1} and B lies on ω_{2}. Let tangents to ω_{1} and ω_{2} at X intersect $O_{1} O_{2}$ at points K and L, respectively. Suppose that line $B L$ intersects ω_{2} for the second time at M and line $A K$ intersects ω_{1} for the second time at N. Prove that lines $A M, B N$ and $O_{1} O_{2}$ concur.
$(\rightarrow$ p.29)
4) Given an acute non-isosceles triangle $A B C$ with circumcircle $\Gamma . M$ is the midpoint of segment $B C$ and N is the midpoint of $\overparen{B C}$ of Γ (the one that doesn't contain A). X and Y are points on Γ such that $B X\|C Y\| A M$. Assume there exists point Z on segment $B C$ such that circumcircle of triangle $X Y Z$ is tangent to $B C$. Let ω be the circumcircle of triangle $Z M N$. Line $A M$ meets ω for the second time at P. Let K be a point on ω such that $K N \| A M, \omega_{b}$ be a circle that passes through B, X and tangents to $B C$ and ω_{c} be a circle that passes through C, Y and tangents to $B C$. Prove that circle with center K and radius $K P$ is tangent to 3 circles ω_{b}, ω_{c} and Γ.

$$
(\rightarrow \mathrm{p} .30)
$$

5) Let points A, B and C lie on the parabola Δ such that the point H, orthocenter of triangle $A B C$, coincides with the focus of parabola Δ. Prove that by changing the position of points A, B and C on Δ so that the orthocenter remain at H, inradius of triangle $A B C$ remains unchanged.
(\rightarrow p.33)

Solutions

1) Circles ω_{1} and ω_{2} intersect each other at points A and B. Point C lies on the tangent line from A to ω_{1} such that $\angle A B C=90^{\circ}$. Arbitrary line ℓ passes through C and cuts ω_{2} at points P and Q. Lines $A P$ and $A Q$ cut ω_{1} for the second time at points X and Z respectively. Let Y be the foot of altitude from A to ℓ. Prove that points X, Y and Z are collinear.

Proposed by Iman Maghsoudi

Solution.

Since $\angle A Y C=\angle A B C=90^{\circ}$, it is concluded that $A Y B C$ is a cyclic quadrilateral. Hence

$$
\angle B Y C=\angle B A C=\angle B X A=\angle B X P .
$$

So $P Y B X$, and similarly $Q B Y Z$ are cyclic quadrilaterals. Therefore it is implied that

$$
\angle B Y X=\angle B P X=\angle A Q B=\angle Z Q B=180^{\circ}-\angle Z Y B .
$$

Meaning points X, Y and Z are collinear.
2) Is it true that in any convex n-gon with $n>3$, there exists a vertex and a diagonal passing through this vertex such that the angles of this diagonal with both sides adjacent to this vertex are acute?

Proposed by Boris Frenkin - Russia
Answer. Yes, it is true.

Solution. Suppose the answer is no. Given a convex n-gon $(n>3)$, consider its longest diagonal $A D$ (if the longest diagonal is not unique, choose an arbitrary on among them). Let B and C be the vertices neighboring to A. Without loss of generality assume that $\angle B A D \geq 90^{\circ}$. This means $B D>A D$, so $B D$ is not a diagonal and hence is a side of the n-gon. Furthermore, $\angle A D B<90^{\circ}$. Let C^{\prime} be the vertex neighboring to D and distinct from B. Then $\angle A D C^{\prime} \geq 90^{\circ}$. Similarly, $A C^{\prime}>A D$, so $A C^{\prime}$ is a side, $C^{\prime} \equiv C$ and $n=4$. Angles $B A C$ and $B D C$ are obtuse, so $B C$ is longer than $A C$ and $B D$, hence $B C>A D$ and $A D$ is not the longest diagonal, a contradiction. Hence the claim.
3) Circles ω_{1} and ω_{2} have centres O_{1} and O_{2}, respectively. These two circles intersect at points X and $Y . A B$ is common tangent line of these two circles such that A lies on ω_{1} and B lies on ω_{2}. Let tangents to ω_{1} and ω_{2} at X intersect $O_{1} O_{2}$ at points K and L, respectively. Suppose that line $B L$ intersects ω_{2} for the second time at M and line $A K$ intersects ω_{1} for the second time at N. Prove that lines $A M, B N$ and $O_{1} O_{2}$ concur.

Proposed by Dominik Burek - Poland

Solution.

Let P be the midpoint of $A B$; Since P has the same power with respect to both circles, it lies on the radical axis of them, which is line $X Y$.

According to the symmetry, $K Y$ is tangent to ω_{1}, therefore $X Y$ is the polar of K with respect to ω_{1}. Since P lies on $X Y$, the polar of P passes through K, and similarly, it also passes through A; Meaning $A K$ is the polar of P with respect to ω_{1} and $P N$ is tangent to ω_{1}. Similarly, $P M$ is tangent to ω_{2}; Thus points A, B, M and N lie on a circle with center P and $\angle A M B=\angle A N P=90^{\circ}$. Let A^{\prime} be the antipode of A in circle ω_{1}, and let B^{\prime} be the antipode of B. Line $B N$ passes through A^{\prime} and line $A M$ passes through B^{\prime}. Note that $A A^{\prime} B^{\prime} B$ is a trapezoid and O_{1} and O_{2} are the midpoints of its bases; Hence $A^{\prime} B, B^{\prime} A$ and $O_{1} O_{2}$ are concurrent, resulting in the claim of the problem.
4) Given an acute non-isosceles triangle $A B C$ with circumcircle $\Gamma . M$ is the midpoint of segment $B C$ and N is the midpoint of $\overparen{B C}$ of Γ (the one that doesn't contain A). X and Y are points on Γ such that $B X\|C Y\| A M$. Assume there exists point Z on segment $B C$ such that circumcircle of triangle $X Y Z$ is tangent to $B C$. Let ω be the circumcircle of triangle $Z M N$. Line $A M$ meets ω for the second time at P. Let K be a point on ω such that $K N \| A M, \omega_{b}$ be a circle that passes through B, X and tangents to $B C$ and ω_{c} be a circle that passes through C, Y and tangents to $B C$. Prove that circle with center K and radius $K P$ is tangent to 3 circles ω_{b}, ω_{c} and Γ.

Proposed by Tran Quan - Vietnam
Solution. Let I, J and O be the centers of circles ω_{b}, ω_{c} and Γ, respectively. It's easy to see that I, J and O are collinear. Let S be the intersection of $I J$ and $B C$. Since X and Y are symmetrical to B and C with respect to $I J$, it is implied that S, X and Y are collinear. Let T be a point on $\overparen{B C}$ of Γ (the one that doesn't contain A) such that $S T$ is tangent to Γ. $T Z$ meets Γ again at Q.

Since

$$
S T^{2}=S X \cdot S Y=S Z^{2}
$$

$Z T$ is the interior angle bisector of $\angle B T C$, it is concluded that Q is the midpoint of $\widehat{B A C}$ of Γ. This leads to $Z T \perp N T$, resulted in T lies on ω. Let R be the intersection of $A M$ and $T Q$, and Ω be the circumcircle of triangle $R T P$. Since

$$
\angle R P T=\angle M P T=\angle S Z T=\angle S T R,
$$

$S T$ is tangent to Ω. Therefore Ω is tangent to Γ at T. We will prove that K is the center of Ω. Now

$$
\left\{\begin{array}{l}
S O M T \text { is cyclic } \Longrightarrow \angle O S M=\angle O T M \\
O S \perp A M \text { and } M S \perp O M \Longrightarrow \angle O M A=\angle O S M=\angle O T M \\
\angle O T Q=\angle O Q T
\end{array}\right.
$$

Which implies

$$
\angle M T R=\angle O T Q+\angle O T M=\angle O Q T+\angle O M A=\angle M R T
$$

and thus $M R=M T$. Let L be the intersection of $A M$ and $T N$. Since $\triangle R T L$ is a right triangle at T, it is concluded that M is the midpoint of $R L$.

$$
\begin{aligned}
K N \| M L & \Longrightarrow \angle M T N=\angle M L T=\angle K N T \\
& \Longrightarrow K M \| T N \\
& \Longrightarrow K M \perp R T
\end{aligned}
$$

Thus, $M K$ is the perpendicular bisector of $R T$. Note that

$$
\angle Z P R=\angle Z T M=\angle Z R P \Longrightarrow Z R=Z P
$$

Since $Z N$ is the diameter of ω it is implied that

$$
Z K \perp K N \Longrightarrow Z K \perp R P
$$

Therefore $Z K$ is the perpendicular bisector of $R P$. Hence K is the center of Ω.
We will prove Ω is tangent to ω_{b} and ω_{c}. Let D be the intersection of $T N$ and $B C$, and denote ($S, S Z$) to be circle with center S and radius $S Z$. Since $T Z$ is the interior angle bisector of $\angle B T C$, we have $T D$ is the
exterior angle bisector of the same angle. This leads to $(D Z, B C)=-1$. Since M is the midpoint of $B C$, we have

$$
M B^{2}=M Z \cdot M D,
$$

which implies M lies on the radical axis of ω_{b} and $(S, S Z)$. Combining with $M A \perp S I$, we have $M A$ is the radical axis of ω_{b} and $(S, S Z)$. Thus, the powers of point R with respect to ω_{b} and $(S, S Z)$ are equal. Invert about the circle centered at R with radius

$$
r=\sqrt{R Z \cdot R T}
$$

which inverts $\Omega \mapsto Z M \equiv B C$ and $\omega_{b} \mapsto \omega_{b}$. Since circle ω_{b} is tangent to $B C$, we have Ω is tangent to ω_{b}.
Analogously, we have Ω is tangent to ω_{c}. This completes the proof.
5) Let points A, B and C lie on the parabola Δ such that the point H, orthocenter of triangle $A B C$, coincides with the focus of parabola Δ. Prove that by changing the position of points A, B and C on Δ so that the orthocenter remain at H, inradius of triangle $A B C$ remains unchanged.

Proposed by Mahdi Etesamifard
Solution. Since H coincides with the focus of parabola Δ, the circles $w_{A}=(A, A H), w_{B}=(B, B H)$ and $w_{C}=(C, C H)$ are tangent to line ℓ, the directrix of Δ.

Now consider triangle $A B C$.

It is well-known that

$$
H A \cdot H A^{\prime}=H B \cdot H B^{\prime}=H C \cdot H C^{\prime}=t
$$

Also

$$
\left.\begin{array}{l}
H A=2 R \cos A \tag{1}\\
H A^{\prime}=2 R \cos B \cos C
\end{array}\right\} \Longrightarrow t=4 R^{2} \cos A \cos B \cos C .
$$

Inversion with center H and inversion radius $-2 t$, inverts the three circles w_{A}, w_{B} and w_{C} to lines $B C, A C$ and $A B$ respectively. In this inversion, line ℓ inverts to incircle of triangle $A B C$. Therefore $I H \perp \ell$, thus point I lies on axis of symmetry of Δ. Also point H lies on the incircle of triangle $A B C$. Hence $H I=r$.

As a result, if orthocenter of $A B C$ lies on its incircle; Also

$$
\begin{aligned}
H I^{2} & =2 r^{2}-4 R^{2} \cos A \cos B \cos C \\
\Longrightarrow r^{2} & =2 r^{2}-4 R^{2} \cos A \cos B \cos C \\
\Longrightarrow r^{2} & =4 R^{2} \cos A \cos B \cos C
\end{aligned}
$$

According to (1), it is implied that $r^{2}=t=H A \cdot H A^{\prime}$. In inversion, points K and F are invert points, thus

$$
\overrightarrow{H K} \cdot \overrightarrow{H F}=-2 t=-2 r^{2} \Longrightarrow H K=r .
$$

Which gives the result that inradius of triangle $A B C$ is constant.

